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Abstract: Summary

Background

In 80% of patients, COVID-19 presents as mild disease. 20% of cases develop severe
(13%) or critical (6%) illness. More severe forms of COVID-19 present as clinical
severe acute respiratory syndrome, T-predominant lymphopenia, high circulating levels
of proinflammatory cytokines and chemokines, accumulation of macrophages and
neutrophils in lungs, and immune dysregulation including immunosuppression.

Methods

All major SARS-CoV-2 proteins were characterized using an amino acid residue
variation analysis method. Results predict that most SARS-CoV-2 proteins are
evolutionary constrained, with the exception of the spike (S) protein extended outer
surface. Results were interpreted based on known SARS-like coronavirus virology and
pathophysiology, with a focus on medical countermeasure development implications.

Findings

Antibodies to variable S domains may enable an alternative infection pathway via Fc
receptor-mediated uptake. This may be a gating event for the immune response
dysregulation observed in more severe COVID-19 disease. Prior studies involving
vaccine candidates for FCoV SARS-CoV-1 and Middle East Respiratory Syndrome
coronavirus (MERS-CoV) demonstrate vaccination-induced antibody-dependent
enhancement of disease (ADE), including infection of phagocytic antigen presenting
cells (APC). T effector cells are believed to play an important role in controlling
coronavirus infection; pan-T depletion is present in severe COVID-19 disease and may
be accelerated by APC infection. Sequence and structural conservation of S suggests
that SARS and MERS vaccine ADE risks may foreshadow SARS-CoV-2 vaccine risks.
Autophagy inhibitors may reduce APC infection and T-cell depletion. Amino acid
residue variation analysis identifies multiple constrained domains suitable as T cell
vaccine targets. Evolutionary constraints on antiviral drug targets present in SARS-
CoV-1 and SARS-CoV-2 may reduce risk of developing antiviral drug escape mutants.

Interpretation

Safety testing of COVID-19 S protein-based B cell vaccines in animal models is
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strongly encouraged prior to clinical trials to reduce risk of ADE upon virus exposure.
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Summary 

Background In 80% of patients, COVID-19 presents as mild disease. 20% of cases develop 

severe (13%) or critical (6%) illness. More severe forms of COVID-19 present as clinical severe 

acute respiratory syndrome, T-predominant lymphopenia, high circulating levels of 

proinflammatory cytokines and chemokines, accumulation of macrophages and neutrophils in 

lungs, and immune dysregulation including immunosuppression.  

 

Methods All major SARS-CoV-2 proteins were characterized using an amino acid residue 

variation analysis method. Results predict that most SARS-CoV-2 proteins are evolutionary 

constrained, with the exception of the spike (S) protein extended outer surface. Results were 

interpreted based on known SARS-like coronavirus virology and pathophysiology, with a focus 

on medical countermeasure development implications.  

 

Findings Antibodies to variable S domains may enable an alternative infection pathway via Fc 

receptor-mediated uptake. This may be a gating event for the immune response dysregulation 

observed in more severe COVID-19 disease. Prior studies involving vaccine candidates for 

FCoV SARS-CoV-1 and Middle East Respiratory Syndrome coronavirus (MERS-CoV) 

demonstrate vaccination-induced antibody-dependent enhancement of disease (ADE), including 

infection of phagocytic antigen presenting cells (APC). T effector cells are believed to play an 

important role in controlling coronavirus infection; pan-T depletion is present in severe COVID-

19 disease and may be accelerated by APC infection. Sequence and structural conservation of S 

suggests that SARS and MERS vaccine ADE risks may foreshadow SARS-CoV-2 vaccine risks. 

Autophagy inhibitors may reduce APC infection and T-cell depletion. Amino acid residue 

variation analysis identifies multiple constrained domains suitable as T cell vaccine targets. 

Evolutionary constraints on antiviral drug targets present in SARS-CoV-1 and SARS-CoV-2 

may reduce risk of developing antiviral drug escape mutants.  

 

Interpretation Safety testing of COVID-19 S protein-based B cell vaccines in animal models is 

strongly encouraged prior to clinical trials to reduce risk of ADE upon virus exposure. 

 

Funding U.S. Air Force Contract No. FA8702-15-D-0001. 
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Introduction 

COVID-19 is caused by the SARS-CoV-2 (2019-nCoV) betacoronavirus. The SARS-CoV-2 is a 

novel betacoronavirus with sequenced genomes ranging from 29·8k to 29·9k RNA bases. The 

SARS-CoV-2 genome encodes replicase proteins, structural proteins, and accessory proteins1 

(Table 1). The ORF1a and ORF1ab polyproteins are proteolytically cleaved into 16 non-

structural proteins designated nsp1-161 (Table 1). Like SARS, COVID-19 manifests as a virulent 

zoonotic virus-mediated disease in humans with currently 82,555 confirmed cases and 2,810 

deaths as of Feb. 27, 20202. 

 

Zoonotic MERS-CoV, SARS-CoV-1, and SARS-CoV-2 are evolutionarily related, and share 

many similarities in human disease characteristics and progression. The mild variant first phase 

of viral progression generally presents with mild flu-like symptoms. Most patients never 

progress beyond this phase, and typically recover quickly and uneventfully. In a mouse animal 

model, phagocytic cells contribute to the antibody-mediated elimination of SARS-CoV-13, and it 

may be that innate responses are sufficient to suppress MERS-CoV and SARS-CoV-2 in the 

majority of patients. For some individuals (18·5%4), infection progresses to a second severe-

critical variant phase. Progression to the second phase often coincides with the typical timing of 

onset of adaptive humoral immunity antibody response (approximately 7-14 days post infection). 

MERS-CoV can infect monocyte-derived macrophages (MDMs), monocyte-derived dendric 

cells (MoDCs), and T-cells5,6, but the infectivity of SARS-CoV-2 in these cell populations (with 

or without non-neutralizing antibody) has not been characterized. For patients with moderate and 

severe symptoms, the pathophysiology is consistent with increased infection of phagocytic 

immune cells (immature MDMs and MoDCs); see Figure 1 for a diagram of the postulated 

cascade mechanism. Chemokines released from infected cells may attract additional dendritic 

cells and immature macrophages that are susceptible to infection, leading to a possible infection 

amplifying cascade of immune cell infection and dysregulation. For some patients with severe 

symptoms, excessive activation of macrophages may contribute to a chemokine and cytokine 

storm7-9. Individuals with SARS have pronounced peripheral T-cell lymphocytopenia with 

reduced CD4+ and CD8+ T-cells10,11, just as is observed with COVID-1912. MERS-CoV and 

SARS-CoV are also associated with T-cell apoptosis13,14. Infection of macrophages and some T-

cells along with viral dysregulation of cellular pathways result in compromised innate and 

humoral immunity in patients during this second and more severe phase of infection 15. High 

virus titer in blood plus the possibility of infected immune cell migration throughput the body 

may account for the additional disease pathophysiologic and clinical observations observed with 

these viruses. MHC I and interleukin (IL)-12 receptor B1 (IL-12RB1) genetic differences 

associated with disease progression has been characterized for SARS16-18. Patients with low or 

deficient serum levels of the innate immune response pattern recognition molecule mannose-

binding lectin (MBL) have increased frequency in SARS patients versus controls19. MHC 

downregulation by epigenetic modifications seen with MERS-CoV infections may enhance 

avoidance of T-killer cell responses, and direct infection of some T-cells5 may play a role in 

increased mortality rate seen for MERS20. Other disease differences may simply be the different 

population of cells with target host receptors angiotensin I converting enzyme 2 (ACE2) for 

SARS-CoV-1 and SARS-CoV-221, and dipeptidyl peptidase IV (DPP4) for MERS-CoV. ACE2 

is expressed in high density in lungs22. 
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Characterizing variability and evolution of viral proteins must inform medical countermeasure 

(MCM) design and development strategies for RNA viruses such as SARS-CoV-2. For viral 

progeny, deleterious mutations are rapidly selected against23. Neutral mutations24 provide a 

framework for antigenic drift to facilitate escape from immune responses; these residues will 

continue to mutate over time. The critical-spacer model proposes that proteins have either amino 

acid residue side-chains critical for function or have variable side-chains which may function for 

positioning/folding of critical residues25. The divergence model of protein evolution proposes 

that the number of critical residues for a protein is consistent for evolutionarily closely related 

proteins26. Herein, these concepts are applied to SARS-CoV-2 proteins by leveraging closely 

related coronavirus protein sequences to provide insights into viral vulnerabilities that can be 

exploited when designing MCMs. The majority of the SARS-CoV-2 proteins exhibit very high 

proportions of critical residues to total residues; hence, these viral enzymes are excellent small 

molecule targets. Such small molecule drug therapeutics or prophylactics have good chances of 

being effective against SARS-CoV, SARS-CoV-2, and SARS-like CoVs if they target these 

highly conserved domains. Non-exposed replicase and accessory proteins have abundant highly 

conserved long peptide targets for selecting continuous segments of critical residues for T-cell 

epitope vaccines27. In contrast, the extracellular domain of the S protein exhibits exposed surface 

areas with high amino acid residue variability. Increased risk for antibody-dependent 

enhancement (ADE) from vaccines targeting SARS-CoV-2, SARS-CoV-1, and MERS-CoV 

exposed residues is indicated by observed ADE in animal models and the antibody facilitated 

infection of phagocytic immune cells frequently observed with coronaviruses3,28. Peptides and 

antibodies targeting HR2 and cell fusion have been shown to block SARS-CoV-1 and MERS-

CoV infections in cell lines29-35 and animal models36-38. Based on the conservation of these 

domains observed with divergence-based modeling, testing of similar peptides and antibodies to 

these targets for SARS-CoV-2 may yield new insights and opportunities for MCM development. 

Likewise, drugs that target the phagocytic pathway associated with Fc-receptor mediated 

endocytosis are promising candidates for blocking the cascade of immune cell infections that 

results in immune dysregulation in COVID-19 patients. 

 

Methods 

2019-nCoV protein sequences from GenBank entry MN908947·3 were searched against the non-

redundant (nr) and PDB database using the NCBI BLASTP web interface. Hit protein sequences 

were downloaded. Protein multiple sequence alignments were created with the Dawn program39. 

Additional 2019-nCoV sequences were added to existing alignments with the Jalview program40. 

Identified protein structures were downloaded from RCSB PDB database41. Dawn variation 

results were visualized with the Jmol program42.  

 

Role of the funding source 

The funder of the study had no role in study design, data collection, data analysis, data 

interpretation, or writing of the report. The corresponding authors had full access to all the data 

in the study and had final responsibility for the decision to submit for publication. 

 

Results 

Dawn variation results for 2019-nCoV amino acid residues were classified into residues with no 

observed variability (candidate critical residues; colored dark green in Figure 2) and to residues 

with 5 or more amino acid substitutions (candidate spacer residues; colored dark blue in Figure 
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2). Amino acids residues colored yellow are considered constrained, allowing only a subset of 

possible amino acid substitutions. Amino acid residues with conservative substitutions are also 

considered critical residues, and are colored light green in Figure 2; positions with > 95% 

conservation of a single residue were included in this category to accommodate potential 

sequencing errors and possible adaptative mutations. Twelve of the nsp replicase proteins have 

factions of critical to total residues of 0·9 or higher (Table 1); this is illustrated in Figure 2 for 

2019-nCoV proteins with high proportions of critical residues in Figure 2 (dark green residues). 

In sharp contrast, the S protein exhibits regions of extensive variability of exposed surface 

residues (Figure 2). 

 

Discussion 

 

Variation Results 

The observed amino acid variations in SARS-CoV-2 proteins are consistent with expected 

natural variations in the context of random mutations and selection in the context of host immune 

responses. For the nonstructural replicase proteins, the majority have fractions of critical residues 

above 88% (Table 2). Long continuous stretches of invariant residues are excellent candidates 

for T-cell vaccines epitope selection, and also for exploratory anti-viral small inhibitory RNA 

(siRNAs)43 development. With a large RNA genome, the virus has evolved over time by deleting 

unnecessary spacer residues. The S protein S1 extended domain shows the highest number of 

exposed surface highly variable residues, in sharp contrast to the replicase enzymes (Figure 2). 

These spacer residues may function as exposed antigens for antibody responses with the possible 

adaptive benefit of suppressing immune responses to less immunogenic surface antigens. Many 

of these S protein antigens may lead to non-neutralizing antibodies. Alternately, evolutionary 

selection for mutations to these residues may facilitate antigenic drift to escape immune 

responses. It seems unusual to have the excessive number of spacer residues on the S1 extended 

domain, unless it provides 2019-nCoV with an additional selective advantage associated with 

non-neutralizing antibodies bound to this domain.  

 

Coronaviruses have Multiple Options for Cell Infection 

The 2019-nCoV S protein contains receptor-binding domains (RBD) targeting human 

angiotensin I converting enzyme 2 (ACE2)44,45; this is the initial route for infecting host cells. To 

take advantage of antibody responses, coronaviruses also leverage antibody Fc uptake to infect 

immune cells46. Coronaviruses use the S protein subunit 2 FP, HR1, and HR2 to infect immune 

cells upon proteolytic cleavage of S within endosomes. HR1 and HR2 form a canonical 6-helix 

bundle involved in membrane fusion29. Jaume et al.46 found that antibody-mediated infection was 

dependent on Fc receptor II and not the endosomal/lysosomal pathway utilized by ACE2 

targeting. Viral infection of complement receptor (CR) cells is an additional possible route of 

infecting cells47. This multi-pronged approach provides coronaviruses like SARS-CoV-1, 

MERS-CoV, and SARS-CoV-2 with more than one mechanism for infecting host cells. This 

leads to the hypothesis that antibody mediated uptake of virus is the potential mechanism that 

induces ADE to vaccines and can also be mediated by maternally transferred antibodies 

(matAbs)48-51.  

 

Macrophages and Immune Dysregulation 
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Lymphopenia is a common feature in patients with SARS10,52 or COVID-1953,54. Two receptors 

have been identified for SARS-CoV-1 including ACE255 and C-type lectin domain family 4 

member M (CLEC4M, CD209L, CD299, DC-SIGN2, DC-SIGNR, HP10347, and L-SIGN)56 

with CLEC4M expressed in human lymph nodes57. Individuals homozygous for CLEC4M 

tandem repeats are less susceptible to SARS infection58. In a mouse model, depletion of CD4+ T 

cells resulted in an enhanced immune-mediated interstitial pneumonitis when challenged with 

SARS-CoV-159. In contrast, depletion of CD4+ and CD8+ T cells as well as antibodies enabled 

innate defense mechanisms to control the SARS-CoV-1 virus without immune dysregulation59. 

Similar results were also observed in mice with SARS-CoV-1 challenge, but treatment with 

liposomes containing clodronate, which deplete alveolar macrophages (AM), prevented immune 

deficient virus-specific T cell response60. In a macaque model, anti-spike IgG causes acute lung 

injury by skewing macrophage response towards proinflammatory monocyte/macrophage 

recruitment and accumulation during acute SARS-CoV-1 infection61. These observations are 

likely linked by antibody-dependent enhancement of coronavirus infection of macrophages46,62. 

In SARS patients, severe SARS was associated with a more robust IgG response63; early 

responders (antibody detectable within 2 weeks) had a higher death rate64,65. The 

pathophysiology of moderate and severe SARS and COVID-19 diseases fits a proposed model of 

antibody-dependent infection of macrophages as the key gate step in disease progression from 

mild to moderate and severe symptoms, and may explain the observed dysregulated immune 

responses66 including apoptosis contributing to development of pan-T cell lymphopenia, 

proinflammatory cascade with macrophage accumulation, and cytokine and chemokine 

accumulations in lungs with a cytokine storm in some patients. 

 

Vaccine Risks for Antibody-dependent Enhancement (ADE) 

Many of the viruses associated with ADE have cell membrane fusion mechanisms49. For 

influenza A H1N1, vaccine-induced anti-HA2 antibodies promote virus fusion causing vaccine-

associated enhanced respiratory disease (VAERD)67. ADE was observed for the respiratory 

syncytial virus (RSV) in the Bonnet monkey model48. Van Erp et al.48 recommends avoidance of 

induction of respiratory syncytial virus (RSV) nonneutralizing antibodies or subneutralizing 

antibodies to avoid ADE. In a mouse model, attempts to create vaccines for SARS-CoV-1 lead to 

pulmonary immunopathology upon challenge with SARS-CoV-168; these vaccines included 

inactivated whole viruses, inactivated viruses with adjuvant, and a recombinant DNA spike (S) 

protein vaccine in a virus-like particle (VLP)-based vaccine. Enhanced hepatitis was observed in 

a ferret model with a vaccine with recombinant modified vaccinia virus Ankara (rMVA) 

expressing the SARS-CoV-1 S protein69. Jaume et al.46 point out the potential pitfalls associated 

with immunizations against SARS-CoV-1. This leads to the prediction that new attempts to 

create either SARS-CoV-1 vaccines70, MERS-CoV vaccines71, or SARS-CoV-2 vaccines have 

potentially higher risks for inducing ADE in humans facilitated by antibody infection of 

phagocytic immune cells. This potential ADE risk is independent of the vaccine technology72 or 

targeting strategy selected due to predicted phagocytic immune cell infections upon antibody 

uptake.  

 

Convalescent plasma therapy has been provided to SARS73 and COVID-1974 patients. Candidate 

patients for convalescent plasma therapy are already experiencing advanced clinical disease 

symptoms, potentially mitigating ADE risk. For Hong Kong SARS patients, convalescent plasma 

therapy had improved outcomes (6·4% mortality rate) when it was provided before day 14 versus 
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after (21·9% mortality rate) compared to the overall SARS-related mortality rate in of 17%. This 

is also being seen for initial COVID-19 patients treated with convalescent plasma therapy74.  

 

Antibody Targets 

Analyzing the Cryo-EM structures of MERS-CoV and SARS-CoV-1 spike (S) glycoproteins, 

Yuan et al. 75 suggest that the fusion peptide (FP) and the heptad repeat 1 region (HR1) are 

potential targets for eliciting broadly neutralizing antibodies based on exposure on the surface of 

the stem region, lack of N-linked glycosylation sites in this region, and sequence conservation. 

Antibodies that interrupt virus-cell fusion will likely block the infection of immune cells using 

Fc-mediated uptake of virus46. This has been demonstrated for SARS-CoV-1 for antibodies to 

the HR2 region76-78. Likewise, 2019-nCoV antibodies that block cell fusion are predicted to not 

share the same ADE risk of other 2019-nCoV antibodies. Antibodies that target the S RBD79 

may have an ADE risk unless combined with a second cell fusion blocking antibody.  

 

Targeting Cell Fusion 

In addition to antibodies, peptides targeting HR2 have been shown to effectively block infection 

in cell and animal models. Multiple peptides based on the heptad repeat regions (HR1 and HR2) 

have been shown to suppress SARS-CoV-1 cell entry30-34. Specific combinations of two peptides 

show synergistic viral inhibition31. An HR2 peptide was effective in a mouse model administered 

intranasally against human coronavirus 229E (HCoV-229E)36. An HR2 peptide combined with 

human interferon- (IFN-) also have significant synergistic antiviral effect against feline 

coronavirus (FCoV)80. Based on anti-HIV-1 peptide, T-2081, Lambert et al. demonstrate that 

analogous peptides inhibit respiratory syncytial virus (RSV), human parainfluenza virus type 3 

(HPIV-3), and measles virus (MV)82. An HR2 peptide can effectively inhibit MERS-CoV 

replication37. Gao et al.29 identified an HR2 peptide that inhibits MERS-CoV fusion in their 

pseudotyped-virus system. MERS-CoV HR1 entry inhibitor peptides have been modified to form 

intra-molecular salt-bridges and increase peptide solubility38. The peptide MERS HP2P-M2 

protected C57BL/6 mice and mice deficient for VDJ recombination-activating protein 1 (RAG1); 

this protection was enhanced by combing this peptide with interferon-38. Similar results are 

demonstrated for additional mouse models83,84. Lipopeptides have been design to target cell 

fusion peptides35. An analogous fusion inhibitor, enfuvirtide (T-20), has been approved for 

treatment of HIV-1 infections81. This provides a path forward for peptide-based MCMs for 2019-

nCoV. A set of SARS-CoV-1 inhibitory peptides that could be adapted or directly tested on 

SARS-CoV-2 are illustrated in Figure 3. The SARS-CoV-1 HR2 peptides can be directly tested 

on 2019-nCoV without modification due to sequence identity in this region of the S protein. 

 

B cell Vaccine Designs 

B cell vaccines that target the S protein cell fusion mechanisms have the highest chance of 

raising neutralizing antibodies with minimal or no ADE risk. Antibodies targeting other portions 

of the S protein or other 2019-nCoV exposed proteins may enable infection of phagocytic 

immune cells even if they are neutralizing. 

 

T cell Vaccine Designs 

Variation results identified multiple continuous linear segments of critical residues from which T 

cell epitopes can be selected in SARS-CoV-2 replicase enzymes and accessory proteins (Figure 
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2). Antibodies developed against these epitopes are highly unlikely to enable antibody enhanced 

infection of phagocytic immune cells because they are not exposed on the surface of 2019-nCoV. 

 

Targeting Autophagy 

Coronavirus replication exploits aspects of normal cellular autophagy85. SKP2 attenuates 

autophagy through Beclin1-ubiquination; its inhibition by the licensed drug niclosamide, a 

treatment for tapeworms, drastically reduced the replications of MERS-CoV in cell culture86. 

Compounds that block autophagy are worth investigating as SARS-CoV-2 MCM. 

 

Targeting Viral Enzymes 

2019-nCoV enzyme proteins are highly conserved with minimal spacer residues (Table 2 and 

Figure 2). The variation results indicate that available SARS-CoV-1 protein structures (Table 2) 

can be directly used for in silico docking and high throughput compound screens. SARS-CoV-2 

protein structures are becoming rapidly available87 for compound screening approaches. The 

high conservation around enzyme pockets holds promise that compound inhibitors against 

SARS-CoV-2 will also be effective against SARS-CoV-1 and SARS-like CoV enzymes. 

 

Summary 

Given past data on multiple SARS-CoV-1 and MERS-CoV vaccine efforts which have failed due 

to ADE in animal models68,71, it is reasonable to hypothesize a similar ADE risk for SARS-CoV-

2 vaccine efforts unless they specifically target domains which will block virus-immune cell 

fusion. MCMs based on vaccines, antibodies, or peptides that block cell fusion could minimize 

predicted ADE risks. Synergy has been observed for combinations of CoV countermeasures 

including interferon- and -. Small molecules targeting viral enzymes should also be pursued. 

 

Data Availability 

Protein multiple sequence alignments and associated variation files are included in Ricke, 

Darrell, 2020, "Medical Countermeasures Analysis of 2019-nCoV / SARS-CoV-2 for COVID-

19", https://doi.org/10.7910/DVN/XWVOA8, Harvard Dataverse, V1. 
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Tables 
 

Table 1. 2019-nCoV proteins*.  

Protein Function Cofactors References 

nsp1 

cellular mRNA degradation, inhibiting type I 
interferon (IFN) expression ·· 88,89 

nsp2 Unknown ·· ·· 

nsp3 Multidomain protein ·· ·· 

nsp3a interacts with single-stranded RNA ·· 90 

nsp3b ADP-ribose 1"-phosphatase ·· 91 

nsp3d 

papain-like protease (Plpro), deubiquitinating 
enzyme (DUB) ·· 92 

nsp4 double-membrane vesicles (DMV) formation ·· 93 

nsp5 3C-like protease (3CLpro) ·· 94 

nsp6 

Restricting autophagosome expansion, DMV 
formation ·· 95,96 

nsp7 RNA binding nsp8:nsp12 97,98 

nsp8 RNA binding; primase nsp7:nsp12, nsp9 97,98 

nsp9 RNA binding, dimerization nsp8  99 

nsp10 scaffold cofactor nsp10, nsp16 100,101 

nsp11 Unknown ·· ·· 

nsp12 RNA-dependent RNA polymerase (RdRp) nsp7:nsp8, nsp14 97 

nsp13 RNA helicase, 5' triphosphatase ·· 102 

nsp14 

3'-5' exoribonuclease (ExoN), guanine-N7 
methyl transferase (N7-Mtase) for mRNA 
capping, nsp12:nsp14 RNA synthesis and 
proofreading ·· 100 

nsp15 endoribonuclease ·· 103 

nsp16 

nsp16:nsp10 RNA cap 2'-O-methyltransferase, 
negatively regulates innate immunity ·· 101,104 

E 

forms homopentameric ion channels (IC) with 
poor ion selectivity, Golgi complex-targeting 
signal, PDZ-binding motif (PBM) ·· 105-111 

M Membrane protein ·· 112 

N packages viral RNA ·· 113 

ORF3a ·· ·· ·· 

ORF6 ·· ·· ·· 

ORF7a Ig-like domain, ER retention signal ·· 114-117 

ORF7b ·· ·· ·· 

ORF8 ·· ·· ·· 

ORF10 Unknown ·· ·· 

S Receptor binding, cell fusion  ·· 75 
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*The E protein IC releases calcium from the endoplasmic reticulum intermediate compartment 

(ERGIC), leading to NLRP3 inflammasome activation108,109. The E protein has a PDZ-binding 

motif (PBM)107 that interacts with syntenin PDZ motifs to activate p38 mitogen-activated protein 

kinase (MAPK) pathway and promotes an acute proinflammatory response110 and a virus PBM 

domain is required for virulence111. The E protein PDZ-binding motif binds to PALS1 and alters 

tight junction formation and epithelial morphogenesis118. The envelope (E) protein includes two 

pathways to promote inflammation; these may contribute to the ADE response. ORF7a protein 

has Ig-like domain114. Hänel et al.115 suggest that this ORF7a possess binding activity for L 

integrin I domain of LFA-1 suggesting that this might block newly synthesized LFA-1 molecules 

from reaching the cell surface because ORF7a contains an ER retention signal116. Loss of LFA-1 

negatively impacts immune responses117. This suggests possible interference of ORF7a with 

immune surveillance mechanisms.  

 

Table 2. 2019-nCoV Variance Analysis 

Protein V1: Critical V2 V3 V4 V5+: Spacers Residues Fraction Structure 

nsp1 112 40 19 3 7 181 0·84  2GDT:A119 

nsp2 279 187 101 46 25 638 0·73 ·· 

nsp3 996 514 239 115 92 1,956 0·77 2GRI:A90 

nsp3a 82 35 20 22 12 171 0·68 2ACF:A91 

Plpro 212 68 24 10 5 319 0·88 5Y3E:A120 

nsp4 337 112 34 13 4 500 0·90 ·· 

nsp5 254 46 4 2 0 306 0·98  6LU787 

nsp6 209 64 15 2 0 290 0·94 ·· 

nsp7 69 13 1 0 0 83 0·99 2AHM:A98 

nsp8 170 26 2 0 0 198 0·99 2AHM:G98 

nsp9 95 16 2 0 0 113 0·98 1UW7:A99 

nsp10 109 27 3 0 0 139 0·98 3R24:B121 

nsp12 5,226 1374 346 105 50 7,101 0·93 ·· 

nsp13 538 61 2 1 0 602 1·00 6JYT:A102 

nsp14 442 78 7 0 0 527 0·99 5C8T:B122 

nsp15 246 76 17 6 1 346 0·93 2GTH:A123 

nsp16 230 55 8 1 2 296 0·96 3R24:A121 

E 24 33 17 5 3 82 0·70 5X29:A103 

M 178 29 11 4 0 222 0·93 ·· 

N 294 76 33 15 4 422 0·88 2OFZ:A124 

ORF3a 107 79 54 20 15 275 0·68 ·· 

ORF6 17 21 22 3 0 63 0·60 ·· 

ORF7a 55 28 30 10 4 127 0·65 1XAK:A114 

ORF7b 5 33 11 4 1 54 0·70 ·· 

ORF8 59 39 15 8 0 121 0·81 5O32:I125 

ORF10 38 0 0 0 0 38 1·00 ·· 

S 650 263 123 107 152 1,295 0·71  6CRZ:A126 

 

  

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3546070

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



 19 

Figures 

 

Figure 1. Disease progression model with normal immune responses during the initial mild 

symptoms phase (see 1-3). Antigen presenting cells migrate to the lymph nodes to activate T-

cells (2a). The progression gate to moderate and server disease is the infection of phagocytic 

immune cells (3a) leading to immune dysregulation (4b). In the lungs, chemokines attract 

additional dendritic cells and immature macrophages that are subsequently infected in an positive 

feedback-loop infection cascade (4b). Infected phagocytic immune cells disseminate throughout 

the body infecting additional organs (5 & 6). Levels of chemokine and cytokines in the lungs 

from infected cells can create a cytokine storm (6). 
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Figure 2. 2019-nCoV Variation results. Amino acid residue color code: dark green (critical 

residues), light green (critical residues with conservative substitutions or variant in less than 10 

sequences, yellow (3 variants), light blue (4 variants; likely spacer residues), and blue (5+ 

variants; spacer residues).  
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Figure 3. SARS-CoV-1 Inhibitory Peptides N4631, HR1-130, HR2-1830, WW-III127, WW-IV127, sHR2-233, sHR2-

833, HRC177, HRC277, CP-1128, SR9129, P631, and CB-11932. SARS-CoV-2 residues different from SARS-CoV-1 

are underlined for adapting SARS-CoV-1 inhibitory peptides. 

 

SARS2 907-NGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQ-965 

SARS1 889-NGIGVTQNVLYENQKQIANQFNKAISQIQESLTTTSTALGKLQDVVNQNAQALNTLVKQ-947 

N46             QKQIANQFNKAISQIQESLTTTSTALGKLQDVVNQNAQALNTLVKQ 

HR1-1         NGIGVTQNVLYENQKQIANQFNKAISQIQESLTTTSTA 

 

SARS2 1046-GYHLMSFPQSAPHGVVFLHVTY-1067 

SARS1 1028-GYHLMSFPQAAPHGVVFLHVTY-1049 

WW-III     GYHLMSFPQAAPHGVVFLHVTW 

 

SARS2  1093-GVFVSNGTHWFVTQRNFYE-1111 

SARS1  1075-GVFVFNGTSWFITQRNFFS-1093 

WW-IV       GVFVFNGTSWFITQRNFFS 

 

SARS2 1144-ELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIK-1211 

SARS1 1126-ELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIK-1193 

sHR2-8     ELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIK 

sHR2-2         PKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYE 

HR2-18                                        IQKEIDRLNEVAKNLNESLIDLQELGK 

HRC2                                           QKEIDRLNEVIKNLNESIIDLQEL 

HRC1                                    NASIVNLQKEIDRLNEVIKNLNES 

CP-1                                  GINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYE 

P6                                    GINASVVNIQKEIDRLNEVAKNL 

SR9                                 ISGINASVVNIQKEIDRLNEVAKNLNESLIDLQEL 

CB-119                      SPDVDLGDISGINAS
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